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Abstract

The Hassenstein—Reichardt (HR) correlation model is commonly used to model elementary
motion detection in the fly. Recently, a neuronally-based computational model was proposed
which, unlike the HR model, is based on identified neurons. The response of both models
increases as the square of contrast, although the response of insect neurons saturates at high
contrasts. We introduce a saturating nonlinearity into the neuronally-based model in order to
produce contrast saturation and discuss the neuronal implications of these elements.
Furthermore, we show that features of the contrast sensitivity of movement-detecting neurons
are predicted by the modified model.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The detection of visual motion by insects is a long studied process in
computational neuroscience. Motion detection models have been devised to describe
the response of biological motion detectors [6], but the way such computation takes
place at the cellular level remains an active research area [1]. Understanding how
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cells process motion from the changes in brightness in the visual input is not only an
important task in itself, but could also provide clues for the understanding of more
complicated processes, such as the prey pursuit system, which receives inputs from
cells implicated in motion detection [5].

Tangential cells are directionally selective, movement-detecting neurons in the
lobula plate of flies, which are involved in the optomotor response [7]. The
Hassenstein—Reichardt (HR) correlational model [6], shown in Fig. 1a, has been used
extensively to explain the response of tangential cells and of the elementary motion
detectors (EMDs) these cells are thought to integrate [3]. Although predictive and
widely used, the HR model has one major disadvantage: while it produces an output
that closely matches the electrophysiological data, it does not provide any
information regarding the computations performed by specific cells and synapses
that allowed the biological system to arrive at such a result.
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Fig. 1. Models of motion detection. (a) The Hassenstein—Reichardt model. The input from a
photoreceptor is multiplied by the delayed (low-pass filtered) signal from the neighboring input unit.
The computation of the difference between the two multiplications results in a directionally-selective
output. HPF and LPF are high-pass and low-pass filters respectively, whereas ) and [ | represent sum and
multiplication, (b) the neuronally-based elementary motion detector model incorporating amacrine cells
(Am), lamina monopolar cells (L2), basket T-cells (T1), two types of transmedullary cells (Tm1 and Tm9),
TS5 bushy T-cells (T5-R and T5-L) and an inhibitory interneuron (IIN). Excitatory and inhibitory inputs
are represented by arrows with positive and negative signs, respectively. RHPF (relaxed high-pass filter)
represents a HPF with a small low-pass component. A filter preceded by a negative sign indicates that the
output of the filter was sign-inverted. Inhibitory inputs from the Tm9 cell are implemented as shunting,
and (c) bottom portion of the neuronally-based EMD model showing the location where the saturation
element (S) was inserted.
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A neuronally-based EMD model has been proposed that incorporates
anatomical and electrophysiological data accumulated throughout years of
research [8]. The model, shown in Fig. 1b, uses mathematical expressions to
represent the relationships between the responses of the cells implicated in the
motion detection system of dipterous insects. The neuronally-based EMD model is
distinguished from the HR model not only in that it is derived from the
functional organization of identified cells, but also by the fact that it
computes motion in two stages. First, responses to motion without regard to
stimulus direction are computed at the Tml level by comparing the local signal
from L2 with delayed surrounding signals from neighboring optic cartridges.
Second, directional motion is computed at the TS5 output through the integration of
a subset of neighboring Tm signals with a specific alignment. The model incorporates
shunting inhibition at the T5 level to achieve the essential nonlinearity. Model
simulation results are consistent with electrophysiological recordings from T5 and
Tm cells. In addition, despite not being mathematically equivalent to the HR
model, the neuronally-based EMD model produces qualitatively similar results to
those from the traditional HR model. This model serves as a basis for the
understanding of the neural basis of motion detection and can be used, as in this
study, to derive testable hypotheses about the network of cells and synapses that it
represents.

In 1979 Dvorak et al. [2] derived contrast sensitivity functions (CSFs,
see Methods) for type Ilal tangential cells from female blowflies. Ten years
later Egelhaaf et al. [3] showed that both the transient and the steady-state
responses of HS tangential cells saturate at high contrasts. The authors
modeled this behavior by inserting a saturating nonlinearity into a simple
HR model. In this paper, we introduce a saturating element into the
neuronally-based EMD model and present results that show that the
modified model closely predicts the electrophysiological data. Furthermore,
we present CSFs for the neuronally-based and HR models with saturation elements
and show that the response of both models predicts features of the contrast
sensitivity of tangential cells. However, unlike the HR model, the location of the
saturating element in the neuronally-based EMD model can be identified with a
specific synapse.

2. Methods

Simulations with the neuronally-based EMD model were run using the Matlab
software (The Mathworks, Natick, MA). The two-dimensional simulations
incorporated a 100 x 10 pixel image viewed by a 50 x 5 hexagonal array of
photoreceptors and an equal number of EMD models. The filters used in the model
were implemented as first order with time constants of 50 ms for the first low-pass
and high-pass filters and 100 ms for the final low-pass filters. The time-step used for
all simulations was 10ms. Shunting inhibition was modeled as a “dirty
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multiplication” [9]:

P10 = postro (1 - ). (n
S max

where the function pos() indicates that negative quantities are set to zero, /. and I
represent excitatory and shunting inputs, respectively, and I max is the maximum
possible value of 5. The input to all simulations was a two-dimensional sinusoidal
grating moving in the horizontal direction with initial phase chosen randomly. The
results of five simulations were averaged to obtain the model response, which was
computed as the sum of the outputs of all functional units.

A saturating element was inserted in the neuronally-based EMD model similar to
that used by Egelhaaf et al. [3]. The saturating element was implemented as a
sigmoid function:

1

S(x)_A+B-1+e_C_X, 2)
with parameters 4 = —.085, B = .17 and C = 38 set to match the electrophysiolo-
gical data (see Fig. 2a) at transient and steady-state conditions. Fig. Ic shows the
location of the saturating element in both the Tml and Tm9 pathways of the

neuronally-based EMD model.
CSFs were computed as the inverse of the minimum contrast required for the
model’s response to reach a particular percentage of the maximum amplitude
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Fig. 2. Contrast saturation data. (a) Peak and steady-state responses from HS tangential cells for two
temporal frequencies: 1 and 10 Hz, (b) neuronally-based EMD model (with saturation elements) responses
to comparable inputs, and (c) sample transient responses of the modified model to sinusoidal stimuli at 1
and 10Hz and a contrast of 0.25. The stimuli was stationary for 2s, moved to the left 2s, was stationary
again for the next 2s and moved to the right 2s. The peak and steady-state responses are marked in the
plots. The steady-state value was computed as the mean response amplitude after the response had become
relatively stable. Panel a reproduced without permission from [3].
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response (criterion response) to sinusoidal stimulus. To convert the spatial frequency
units of cycles/optic cartridge (derived from the model implementation) to units of
cycles/degree, as reported in [2], a conversion factor of 1.5 degrees/optic cartridge
was used. This is in accordance with interommatidial angles for the fly Lucilia
sericata, which vary from one to about two degrees depending on the region of the
eye being examined [10].

3. Results
3.1. Modeling saturation at high contrasts

The measured responses of HS tangential cells to sinusoidal gratings which were
initially stationary and then began moving suddenly are shown in Fig. 2a. The
contrast of these stimuli was varied at two temporal frequencies (1 and 10 Hz) [3].
Both the peak value of the transient response and the steady-state response value is
plotted. The peak response amplitudes at both frequencies reach saturation faster
than the steady-state responses. The peak responses for both frequencies seem to
saturate at about the same contrast, while the steady-state response at the 1 Hz
frequency saturates faster than the response at 10Hz. Furthermore, the peak
responses are higher at the higher temporal frequency, whereas the steady-state
responses are smaller. As shown in Fig. 2b, these features, as well as the crossing
point between the two steady-state curves at a contrast of 0.5, are all predicted by the
modified neuronally-based EMD model. Sample responses of this model to
sinusoidal stimuli at temporal frequencies of 1 and 10 Hz and a contrast of 0.25
are shown in Fig. 2c.

Simulations with the saturating element inserted at different locations in the EMD
model revealed that the results of the model predict these electrophysiological
features only if the nonlinearities are placed as shown in Fig. lc. For instance,
inserting the nonlinearity before the low-pass filters in the Tm9 pathways produced
nearly equal peak response amplitudes for both simulated frequencies at all contrasts
(data not shown).

3.2. Measuring contrast sensitivity functions

Contrast sensitivity functions were computed for the neuronally-based and HR
models with saturating nonlinearities and compared to the functions obtained by
Dvorak et al. [2]. for type Ilal tangential cells. Fig. 3a shows the CSFs from
tangential cell recordings and from the neuronally-based and HR models with
saturating nonlinearities (Figs. 3b and c). The results from both models share several
features with the electrophysiological data. The sensitivity of both models peaks at
the same range of intermediate spatial frequencies as the CSFs of tangential cells,
while showing similar degrees of attenuation at low and high frequencies. Like the
electrophysiological data, the CSFs of both models show flat regions at intermediate
frequencies. However, unlike the CSFs of tangential cells, the CSFs of the models do



178 Z. Rivera-Alvidrez, C.M. Higgins | Neurocomputing 65-66 (2005) 173—179

=3
=3

3 H
g £
2 o 4
= & 3
R
o7 5
» o / E -
° § 10 / S 10 /f/
= > Z
S s / :
(&) G c
5 3
@ / / %
g /] £ ‘
£ ! g !
“ N 5 1 G 1 °
0.01 0.1 i © oot 0.1 1 0.01 0.1 1
(a) Spatial Frequency (cycles / degree) (b) Spatial Frequency (cycles / degree) (C) Spatial Frequency (cycles / degree)

Fig. 3. Contrast sensitivity functions for criterion response amplitudes (top to bottom lines) of 5%, 10%,
25%, 50% and 75% of maximum amplitude response for: (a) type Ilal tangential cells, (b) the neuronally-
based model with saturation nonlinearities and (c) the HR model with saturation nonlinearities. Panel a
reproduced without permission from [2].

not become flatter as the criterion response amplitudes become larger (criterion
response amplitudes increase from top to bottom CSFs in Fig. 3).

4. Discussion

A saturating nonlinearity was inserted in a neuronally-based model of elementary
motion detection with parameters tuned to match electrophysiology from HS
tangential cells (see Fig. 2). The model was found to produce results which looked
very similar to the biological data, accurately predicting the shape of the curves and
their temporal frequency dependence. CSFs of the model were computed and found
to predict several features of the CSFs of tangential cells (see Fig. 3). While the
sensitivity amplitudes, rates of attenuation at low and high frequencies and spatial
frequency tuning of the neuronally-based CSFs were similar to the electrophysiol-
ogy, the CSFs of the model do not become flatter at high contrasts (higher criterion
response amplitudes). This feature of the electrophysiological data is likely due to a
neuronal mechanism that holds sensitivity constant at high contrasts to compensate
for attenuation that results from the optical filtering of the visual stimulus [7].
Evidence of such mechanism has been found in humans and is termed ‘“‘contrast
constancy’ [4]. This compensatory mechanism is not incorporated in the HR or the
neuronally-based EMD models.

While the HR and neuronally-based EMD models were found to produce similar
results in both experiments, the results from the neuronally-based model have
implications for the physiology of the insect. The simulations showed that there is
only one location for the saturation element in the EMD model that produces results
that match the electrophysiology from [5] at both transient and steady-state
conditions. This implies that if the neuronally-based EMD model is correct in the
relationships between the cells it incorporates, this saturation may arise in the
synapses of the transmedullary cells (both Tm1 and Tm9) onto T5.
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