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Abstract. Flies have the capability to visually track small
moving targets, even across cluttered backgrounds. Pre-
vious computational models, based on figure detection
(FD) cells identified in the fly, have suggested how this
may be accomplished at a neuronal level based on infor-
mation about relative motion between the target and
the background. We experimented with the use of this
“small-field system model” for the tracking of small mov-
ing targets by a simulated fly in a cluttered environ-
ment and discovered some functional limitations. As a
result of these experiments, we propose elaborations of
the original small-field system model to support stronger
effects of background motion on small-field responses,
proper accounting for more complex optical flow fields,
and more direct guidance toward the target. We show
that the elaborated model achieves much better tracking
performance than the original model in complex visual
environments and discuss the biological implications of
our elaborations. The elaborated model may help to ex-
plain recent electrophysiological data on FD cells that
seem to contradict the original model.

1 Introduction

It is well known that male flies visually track small moving
targets for the purpose of mating or predation. Previous
authors have suggested that this figure-ground discrimina-
tion is accomplished based on the relative motion of the
target to the background (Land and Collett 1974), and the
neuronal basis for this discrimination in the lobula plate
of the fly has been extensively explored and modeled.

Originally derived from behavioral experiments
(Reichardt and Poggio 1979), the model of Reichardt
et al. (1983) postulated neuronally plausible mechanisms
for figure-ground discrimination based on unidentified
cells. Upon the discovery of a new class of lobula plate
tangential neurons known as figure detection (FD) cells
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(Egelhaaf 1985a,b) sensitive to small moving objects but
not to wide-field motion, the model was further devel-
oped (Egelhaaf 1985c; Reichardt et al. 1989) to predict
torque responses of fixed flies in the presence of rota-
tional visual stimuli. The authors proposed that two par-
allel systems operate in the lobula plate of the fly: a
large-field motion system, associated behaviorally with the
compensatory optomotor response and neuronally with
horizontal cells that respond most strongly to wide-field
stimulation (Hausen and Egelhaaf 1989), and a small-
field system (referred to as the SF system), employing
FD cells, which is most sensitive to small moving objects.
This small-field sensitivity was predicted to be the result of
inhibition from wide-field neurons, and thus the model re-
sponse to small-field motion decreases as the wide-field
background motion increases. Lobula plate tangential
neurons (CH cells) that respond to wide-field stimuli and
are likely to inhibit the response of FD cells were later
identified (Warzecha et al. 1993; Egelhaaf et al. 1993),
supporting the model. However, more recently Kimmerle
and Egelhaaf (2000) played optical flow patterns gener-
ated by a tethered flying fly back to a fixed fly preparation
and found that the response of FD cells, while sensitive
to the motion of small objects as expected, showed no
strong dependence on background motion, implying that
the SF-system model is incomplete.

Using the most advanced model of the SF system
available, we have experimented in simulation with visual
tracking of small moving targets in a cluttered visual envi-
ronment. Other authors have performed related experi-
ments (Huber and Bülthoff 1998; Korrel 2000), but none
actually implemented the biological small-field model. In
our experiments, the simulated insect flies forward, track-
ing a small moving target in a two-dimensional (2D)
environment of fixed objects, and thus our visual stimuli
are significantly different from those of Reichardt et al.
(1989) in which the fly was fixed and the environment
rotated around it. We found that, in order to achieve sat-
isfactory visual tracking performance in cluttered envi-
ronments, it was necessary to elaborate the model in
three ways: first, to strengthen the effects of background
motion on small-field responses; second, to account for the
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possibility of background stimuli that do not rotate; and
third, to allow for proper tracking of targets moving
toward the midline of the simulated fly. In this paper, we
describe our elaborated version of the SF-system model,
present the simulation results of a fly tracking a small mov-
ing object with the model in a cluttered environment, and
suggest the biological implications of our modifications.
An earlier version of this research was previously pub-
lished in thesis form (Pant 2003).

2 Methods

Simulations of visual target tracking with a model fly
were conducted in Matlab (The Mathworks, Natick, MA,
USA). The fly was situated in a 2D arena 300×300 arbi-
trary space units in size. The visual field of each eye of the
fly was a one-dimensional (1D) array of 110 pixels. The
position of each pixel corresponded uniformly to an angle
from the center of the simulated fly, as illustrated in Fig. 1.

A moving “target” and fixed “background objects”
were visible to the fly on a black background, each being
a stereotypical object with a brightness in the fly’s visual
field proportional to its distance from the light source (de-
scribed in detail below). The horizontal size of each object
in the visual field varied inversely with its distance from
the fly. The target was distinguished from background ob-
jects only by the fact that the target moved in the arena
while background objects were fixed in position. Aside
from the target and the fixed background objects, no part
of the arena was ever visible. The visual field of the fly was
constructed geometrically at each timestep by taking into
account the fly’s position relative to objects in the arena.

The fly’s state was specified by an x, y position in the
arena and by an orientation θ in which, analogously to a
flying insect, it could translate. The fly was assigned a fixed
translatory velocity v of 18 space-units/s, and the angu-
lar velocity of the fly was computed directly proportional
to the motor response RSF(t) produced by the SF-system
model (17). Thus the fly’s state evolved over time as:

Left 
eye

Right

Overlap
  zone

eye

Fig. 1. Visual fields of the simulated fly. Angles to the left, indicated
by the light gray area, are seen only by the left eye. Near the midline,
the black area indicates a range of angles seen by both eyes. The arrow
indicates the entire angular extent of the left eye. Angles to the right
seen only by the right eye are indicated by the dark gray area. Each
eye covered the angles from 90◦ to one side of the midline to 9◦ on
the other side with 110 pixels. The two eyes thus had an overlapping
zone of 20 pixels (18◦ of visual angle) centered on the midline; the
combined total field of view of the simulated fly covered 180◦

θ̇ (t)=g ·RSF(t) , (1)
θ(t +1)= θ(t)+ θ̇ (t) · τ , (2)
x(t +1)=x(t)+v · cos(θ(t)) · τ , (3)
y(t +1)=y(t)+v · sin(θ(t)) · τ , (4)
where g is a control loop gain factor set to stabilize the
performance of the fly at a value of 10 unless otherwise
specified, and τ is the timestep (time between frames) of
the simulation (10 ms). In order to emulate a more real-
istic physical fly, the angular velocity of the simulated fly
θ̇ was limited to a maximum of π radians per second.
Simulations were terminated when the x, y position of
the simulated fly went outside of the arena, when the fly
moved vertically ahead of the target, or when the distance
between fly and target dropped below a threshold of 5
space-units, indicating a collision.

The fly began each simulation at the bottom center of
the arena (coordinates 150, 30). The initial vertical posi-
tion of the target was 60 space-units ahead of the fly, and
its horizontal starting position was allowed to be one of
nine equally spaced positions from 90 to 210 space-units
to allow for a range of interception difficulties. In all sim-
ulations the target’s initial position was within the fly’s
visual field. The target moved at a fixed vertical speed of
12 space-units/s and moved horizontally with a sinusoi-
dally varying speed peaking at 24 space-units/s and with
a frequency of 0.4 cycles per simulated second. Refer to
Fig. 6 for an example interception.

A simulated light source was located at the center of
the arena. In order to allow variation of the strength of
background clutter, the brightness B of objects (0≤B ≤1)
varied inversely with their distance D from the light source
as

B = 1
1+D/Dhalf

, (5)

where Dhalf is a constant that specifies the distance from
the light source at which an object has 50% brightness. This
formula is in agreement with modern computer graphics
software, which generally considers the inverse square-law
reduction of brightness predicted from a point light source
to be too severe for synthesizing realistic images. Increas-
ing Dhalf increases the brightness of both the target and the
background objects, but it can also be shown that a larger
value of Dhalf decreases the contrast of the target relative
to background objects, thus making the target harder to
detect.

Elementary motion detection was computed on the
sequence of 1D visual images seen by the simulated fly us-
ing an array of 109 Hassenstein–Reichardt (HR) motion
detectors (Hassenstein and Reichardt 1956; Van Santen
and Sperling 1985) in each eye (Fig. 2). First-order high-
pass and low-pass filters had time constants of 100 ms.
As in the original simulations of the SF-system model
(Reichardt et al. 1989), our elementary motion detection
model does not employ contrast saturation (Egelhaaf and
Borst 1989).

In order for the performance of the large-field model
(25), the sum of a large number of motion detector out-
puts, to be comparable to the SF-system model, it was
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Fig. 2. Hassenstein–Reichardt elementary motion detection model.
Semicircles at top indicate photoreceptors. HPF and LPF indicate,
respectively, high-pass and low-pass filters, π indicates a multipli-
cation, and � a sum. This model produces an output whose sign
indicates stimulus direction

necessary to introduce a relative gain of 1/100. This gain
was chosen empirically to roughly match the tracking per-
formance of the large-field and small-field models in the
presence of a target and no background objects, in which
situation they should be comparable.

To allow comparison between models, a numerical met-
ric of tracking performance in each simulation was de-
vised. This metric requires the computation in each frame
i of the distance Dtarget(i) from the simulated fly to the
target and the angle θtarget(i) between the fly’s heading
direction and the direction toward the target. The met-
ric is based on the root mean square (RMS) value of the
product of these two signals:

M =Mref −
√
√
√
√ 1

Nf
·

Nf
∑

i=1

[

Dtarget(i) · θtarget(i)
]2

, (6)

where Nf is the number of frames in the simulation and
Mref is the RMS value obtained by using zero angular
velocity throughout the experiment. This metric penalizes
turning away from the target when the distance is great
but allows for large relative target angles when distances
are small, as is inevitable at the end of a successful inter-
ception. Negative values of the metric M indicate turning
away from the target, zero indicates movement straight
ahead, and positive values indicate turning toward the tar-
get, and thus good tracking performance.

For all experimental data shown, simulations were run
with all nine possible initial horizontal target positions,

and the median metric over these simulations was taken.
Since the difficulty of the interception varies with ini-
tial target position, the expected tracking performance is
different for each position, and thus standard deviation is
not shown.

3 Results

In order to perform closed-loop simulations of visual
target tracking using the SF-system model, it was first
necessary to consider how to use the model to control
a simulated fly. In two ways, the torque data presented by
Reichardt et al. (1983) are not the torque that would be
generated by a fly in flight.

Firstly, in order to easily evaluate “online” the torque
response of the fly, Reichardt et al. (1983) processed the
raw torque data through an instrument that created a run-
ning average (a Princeton signal averager model 4202).
This required that the authors add a running average to
their model as well in order to be comparable to the torque
data collected. However, this running average is not appro-
priately added to the control signal of our simulated fly
since it does not represent the real-time torque response
of the fly. Additionally, this long-term average would lead
to a crippling delay in the control loop.

Secondly, analogously to Kimmerle et al. (2000), we use
the output of the model to represent the angular veloc-
ity, not the torque (proportional to the derivative of the
angular velocity), of our simulated fly. Since the sign of the
model output indicates which side of the midline the target
is on, use of the model output as torque would force the
simulated fly to overshoot the target and track in a “zig-
zag” fashion, since it would be impossible to immediately
cancel the built-up angular velocity at the time the target
crossed the midline. This is in contrast to the extremely sta-
ble tracking performance documented below. If our sim-
ulated fly were fixed as in the behavioral experiments of
Reichardt et al. (1983) by zeroing the angle and angular
velocity each timestep, the “torque” generated from use of
the SF-system model in this way would indeed be exactly
the model output, since the change in angular velocity
(torque) at each timestep would be from zero to the model
output.

In the following sections, the model of the SF system as
proposed by Reichardt et al. (1989) is first mathematically
described, then the elaborations necessary for small-target
tracking are presented, and finally our tracking simulation
results with the elaborated model are given.

3.1 The small-field system model

In the model of Reichardt et al. (1989), the input to the
SF system is provided by a retinotopic array of elemen-
tary motion detectors (EMDs), each implementing the
Hassenstein–Reichardt motion detection model (Hassen-
stein and Reichardt 1956; Van Santen and Sperling 1985).
EMDs in both eyes have a positive response to front-to-
back motion from the midline of the insect. According to
their preferred direction of motion, FD cells are excited
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Fig. 3. Model of the SF system based on the FD cell. Excitatory and
inhibitory synapses are indicated by black and white triangles, respec-
tively. Shunting inhibition is indicated by gray triangles. � indicates
a sum. Responses from neighboring photoreceptors (PR) are input
to EMDs. EMD outputs are split into positive and negative compo-
nents. These components are aggregated into directionally selective
monocular pool cells (P +, P −) and then into CW and CCW binocu-

lar pool cell responses (P CW
right and P CCW

right ). These directionally selective
binocular pool cells interact via shunting inhibition with the indi-
vidual motion detector output channels prior to their combination
by unit xi . For simplicity, only the right-side computation is dia-
grammed. The motor output is computed as the difference between
the spatially summed xi from the two sides. Modified from Reichardt
et al. (1989)

by one of these types of motion detectors and inhibited
by the other. The inhibition is brought about by synaptic
transmission from pool cells that aggregate the response
of the motion detectors over the entire visual field.

A block diagram of the model is presented in Fig. 3.
Two adjacent photoreceptors provide visual input to indi-
vidual EMDs. The motion detector output OHR is split
into front-to-back responses v+

i >0 and back-to-front re-
sponses v−

i > 0 such that OHR = v+
i − v−

i . Only one of v+
i

and v−
i is nonzero at any given time. Two sets of mon-

ocular pool cells spatially sum the EMD responses and
are thus direction selective. The P + pool cells have posi-
tive responses to front-to-back motion and are inhibited
by back-to-front motion. Similarly, the P − pool cells re-
spond positively to back-to-front motion. The inhibitory
input to each pool cell is weighted by a factor 0 <T < 1,

and thus the monocular pool cell response is given by the
following expressions:

P +(t) =
N

∑

i=1

[v+
i (t)−T ·v−

i (t)] , (7)

P −(t) =
N

∑

i=1

[v−
i (t)−T ·v+

i (t)] , (8)

where N is the number of EMDs associated with a par-
ticular eye. Monocular pool cells from both sides of the
brain interact to form clockwise (CW) and counterclock-
wise (CCW) binocular pool cells with a relative contribu-
tion of ipsilateral and contralateral input of 0<k <1:



421

P CW
right(t) = P +

right(t)+k ·P −
left(t) , (9)

P CCW
right (t) = P −

right(t)+k ·P +
left(t) . (10)

Left-side binocular pool cells P CW
left and P CCW

left are each
computed from the same two monocular pool cells as
above, but with the parameter k on the response from the
contralateral eye. These binocular pool cell responses are
comparable to the response of wide-field tangential cells
in the lobula plate of the fly, and specifically the iden-
tified CH cell has been proposed as a strong candidate
for one type of pool cell (Warzecha et al. 1993; Egelhaaf
et al. 1993). The CW and CCW pool cell responses interact
with individual EMD responses. The relative contribution
of both the pool cells to individual EMDs is weighted
by a factor 0 < k∗ < 1 to maintain the direction selectiv-
ity. The response of the detector channels are normalized
through shunting inhibition by the pool cell responses.
Assuming a saturation of the output approximated by an
exponent 0<q <1, the normalized detector channels are
given by:

y+
i,right(t)=

v+
i,right(t)

β + [P CW
right(t)+k∗ ·P CCW

right (t)]q
, (11)

y−
i,right(t)=

v−
i,right(t)

β + [P CCW
right (t)+k∗ ·P CW

right(t)]
q

, (12)

where β is a constant related to shunting inhibition. To
properly emulate shunting inhibition, only positive values
of the sum of binocular pool cells are used in the nor-
malization; negative values are set to zero. Left-side units
y+

i,left and y−
i,left are computed similarly. The excitatory and

inhibitory responses are nonlinearly combined:

xi,right(t)= [y+
i,right(t)]

n − [y−
i,right(t)]

n , (13)

xi,left(t)= [y+
i,left(t)]

n − [y−
i,left(t)]

n , (14)

where the exponent n is used to enhance large values. The
responses from these units on either side of the brain are
accumulated:

Xright(t)=
N

∑

i=1

x i,right(t) , (15)

Xleft(t)=
N

∑

i=1

xi,left(t) . (16)

These X expressions respond comparably to identified FD
cells, directionally sensitive to the motion of small objects
anywhere in a wide visual field but not sensitive to wide-
field motion. To truly represent the firing-rate response
of a spiking FD cell, the response of the X units must
of course be rectified (positive part only taken). To obtain
the model instantaneous output, these values are then sub-
tracted from each other:

RSF(t)=Xleft(t)−Xright(t) . (17)

The final model output, compared to torque responses
recorded from a fly, is a combination of the real time re-
sponse RSF(t) and a running average of the response. The

running average was required due to the method of torque
data collection, as discussed earlier.

The numerical parameters used in our simulations of
the original SF-system model (7)–(17) were T = 0.3, k=0.7,
β = 0.1, k∗ = 0.3, q = 0.5, and n = 3. With the exception
of β, these parameters were chosen to match those used
by Reichardt et al. (1989). Likely due to differences in our
implementations of elementary motion detection,β had to
be set at 0.1 rather than 0.6 as used in the original authors’
simulations to allow the normalization operation to work
as intended.

3.2 The elaborated SF-system model

While experimenting with the use of the SF-system model
for target tracking, we found it necessary to elaborate
the original model in three ways. Firstly, we modified the
model so that the parameter k∗ strengthens the normali-
zation operation rather than weakening it. Secondly, we
incorporated the possibility of more complex background
motion than in the original model. Finally, we modified
the model so that the SF-system model would always guide
the simulated fly toward the target, because in some cases
the original model would guide the fly away. These elabo-
rations are described in detail below.

3.2.1 Enhanced normalization. The parameter k∗ in the
model describes proposed interactions between binocular
pool cells on a particular side of the brain. In the original
model, the normalization of a particular small-field mo-
tion output (for example,v+

i,right) was by the sum of the pool
cell that would be excited by that particular direction of
motion (P CW

right) and k∗ times the pool cell inhibited by that
direction of motion (P CCW

right ). Thus the larger the param-
eter k∗, the weaker the normalization operation, and for
k∗ =1 the normalization operation becomes virtually uni-
form for all yi regardless of the pattern of visual motion.
The mixing of complementary and contradictory informa-
tion implied by k∗ ensures that the ratio between strongly
and weakly activated pool cells is always small, and thus
that the resulting enhancement of target signal strength
is minimized. For this reason, the original model is only
weakly able to detect targets in cluttered backgrounds.

We propose that k∗ be a negative parameter, indicating
inhibition between binocular pool cells before the shunt-
ing operation. In this formulation, k∗ enhances the nor-
malization by combining information that is consistent
with the motion being normalized. This modification in-
creases the ratio between strongly and weakly activated
pool cells and greatly strengthens the response to mo-
tion that is inconsistent with the estimated background
motion.

A value of k∗ = −0.3 was used in simulations of the
elaborated model with enhanced normalization. All other
constants were as specified for the original model.

3.2.2 Allowing for more complex background motion. The
SF-system model as proposed by Reichardt et al. (1989)
modeled the target fixation behavior of a fly in a fixed
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Fig. 4. Optical flow generated during pursuit. a Pure expanding opti-
cal flow generated by platform translation with no component of
rotation. b Expanding optical flow with shifted FOE due to small

rotational component. c Large rotational component of platform
motion while also translating. d Pure rotational motion, generating
a linear flow field

position around which visual stimuli rotated. Therefore, it
did not take into consideration the complexity of the opti-
cal flow field observed by a moving fly pursuing a target.
During pursuit, the translatory motion of the fly is cou-
pled with the rotational motion required to keep the target
in the center of the view field. Translatory motion of the
fly alone produces an expanding optical flow field with the
focus of expansion (FOE) at the midline (Gibson 1950),
as illustrated in Fig. 4a. When translating with an added
component of rotational motion, the FOE is shifted to
one side of the view field due to superposition of the linear
optical flow generated by the rotation upon the expanding
flow generated by translation. If the rotation rate is small
(Fig. 4b), the shift of the FOE is small, and the field can
be approximated as a pure expanding optical flow field.
However, if the rotation rate is large (Fig. 4c), the FOE
shifts completely out of view, and the optical flow is better
approximated by a pure linear pattern (Fig. 4d).

The purpose of the shunting inhibition “normaliza-
tion” in the SF-system model is to reduce the strength
of small-field motion signals that are consistent with the
estimated background motion. Only small-field motion
that is distinct in sign from the estimated background
motion pattern should lead to strong responses from the
model. By synthesizing only pool cell signals that corre-
spond to rotation (P CW and P CCW), the possible estimates
for background motion are limited to rotation of the fly.
In the elaborated model, we further synthesize pool cells
for optical flow expansion, which leads to front-to-back
(positive) motion on both eyes and related pool cells for
contraction:

P
exp
right = P +

right +k ·P +
left , (18)

P con
right = P −

right +k ·P −
left . (19)

Expressions for the left-side P
exp
left and P con

left are computed
similarly, with the parameter k multiplied by the contra-
lateral pool cell.

It is not desirable to simultaneously normalize by all
possible background motion types, since this would lead
to small responses in all cases. Thus we must choose an
estimate of the background motion based upon our visual
input. There are many ways to do this, but we propose that
either an estimate of expansive or rotatory background
motion be chosen based on the relative pool cell activa-
tions. In our elaborated model, when the sum of the pool
cells for expansion exceeds that of rotation,

P
exp
right+P con

right +P
exp
left +P con

left >P CCW
right +P CW

right +P CCW
left +P CW

left ,

(20)

the estimated background motion is approximated by a
pure expansion (Fig. 4a). Under this condition, normali-
zation of small-field outputs is by expansion and contrac-
tion pool cells:

y+
i,right(t) =

v+
i,right(t)

β + [P exp
right(t)+k∗ ·P con

right(t)]
q

, (21)

y−
i,right(t) =

v−
i,right(t)

β + [P con
right(t)+k∗ ·P exp

right(t)]
q

. (22)

Expressions for the left-side y+
i,left and y−

i,left are computed
similarly. When the condition of (20) is not met, the optical
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Fig. 5. Example visual fields seen by the simulated fly. Each panel
shows at top the visual field of the simulated fly and at bottom the cor-
responding top view of the arena at the beginning of a simulation. a
The case of eight objects present on the boundary of the arena. b The
same information for 80 objects. c For 300 objects. Dhalf was set at

300. In the top view, circles on the boundary represent fixed objects,
an asterisk represents the simulated fly, and a circle inside the arena
represents the target. Note that the target brightness is higher than
that of the background objects due to its smaller distance from the
light source

flow field is approximated as purely rotational (Fig. 4d),
and the output of the normalization stage is represented as
in the original model by (11)–(12). In this manner, the vi-
sual environment is used to decide which estimate is more
appropriate.

3.2.3 Guidance from nondirectional motion. The original
model suggested small-field units xi,left and xi,right [(13) and
(14)] that would respond strongly and in a signed direc-
tional manner to small moving objects. These units were
spatially summed and used to produce the motor output
of the system. This directionality implies that the turn an-
gle generated by the SF system as formulated for a target
moving toward the midline will guide the simulated fly
away from the target. For this reason, the original SF-sys-
tem model is unable to track targets that make significant
course changes during the interception (see Discussion).

We modified the model to initiate a turn toward a pos-
sible target in all cases. Rather than summing the xi,left
and xi,right units directly into the model output, they are
summed in absolute value, making them responsive to
small moving targets in a nondirectional manner. There-
fore, target motion in either direction to the left of the
midline will lead to a turn toward the left. This change
requires us to replace (15) and (16) in the original model
with

Xright(t)=
N

∑

i=1

|xi,right(t)| , (23)

Xleft(t)=
N

∑

i=1

|xi,left(t)| . (24)

The absolute value operation cannot be taken after the
summation because this would allow a large number of
small xi outputs of one sign (corresponding to normal-
ized background motion) to cancel a small number of xi

outputs of the opposite sign (corresponding to a target).

Since the Xright and Xleft units corresponded in the origi-
nal model to identified FD cells, and since these units as
formulated above respond to small-field motion without
regard to direction, this modification must be reconciled
with data on FD cells (see Discussion).

3.3 Simulations with the elaborated SF-system model

In order to investigate the tracking performance of the
elaborated SF-system model, we simulated a fly moving
through a 2D arena (see Methods for details). A number
of fixed objects were placed on the boundary of the arena
to generate a cluttered background. A sinusoidally moving
target, emulating the motion of another insect, was also
placed in the arena. Figure 5 illustrates some of the views
seen by the simulated fly, and Fig. 6 shows an example of
the tracking performance of the model.

In order to measure the effect of the background objects
on tracking, we compare the tracking performance of the
elaborated SF-system model to a naive tracking model
that simply turns toward any motion that it sees. This sys-
tem may be expressed in terms of the pool cells of the
SF-system model as:

RLF(t)=
∣
∣
∣P

+
left −P −

left|− |P +
right −P −

right

∣
∣
∣ . (25)

In the presence of a single moving target object and no
background objects, this model will guide the simulated fly
appropriately. In fact, due to the square-law contrast re-
sponse of the HR motion detector (Van Santen and Sper-
ling 1985), it is not unreasonable to expect that this model
would even be able to reject low-contrast background ob-
jects to some extent. We refer to this tracking system as
the LF system since it responds to large-field motion as
well as small-field motion, although this system is much
less sophisticated than the LF system of Reichardt et al.
(1989).
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Fly's starting position 

Target’s starting position 

Fig. 6. Path of the simulated fly as it tracks a moving object during
a typical experiment. The solid line shows the path of the fly and
the dashed line the path of the target. This simulation employed 150
background objects with Dhalf set at 300 and ended with a simulated
collision

Tracking performance is measured for each simulation
by the metric of (6), computed from the angle and distance
between the simulated fly and the target over the course
of the interception. A zero metric indicates that the fly has
flown straight ahead without turning, as it might with no
visual input at all. Positive metrics indicate a reduction of
angle and distance to target relative to the “blind” case,
and thus represent good performance. Negative metrics
indicate turns away from the target, and thus worse perfor-
mance than the “blind” case. Each simulation was run for
a range of initial target positions (see Methods), including
initial positions to the left of, in front of, and to the right of
the fly initial position. The difficulty of the tracking exper-
iment increases as the initial target position moves away
from directly ahead of the fly in either direction due to the
greater initial distance to target and the larger turn angle
required to center the target in the visual field. Each data
point shows the median tracking performance over the
entire range of initial target positions, thus encompassing
the overall tracking performance of the model.

To investigate the strength of the SF system in reject-
ing background clutter, we varied the number of objects
on the walls of the arena. Tracking performance is plot-
ted in Fig. 7a. While the fully elaborated model (M123)
is able to track the target in the case of no background
objects, as the number of background objects increases
its performance actually improves. This results from the
normalization operation. In the case of no background
objects, the model’s estimate of the background motion
comes entirely from the target, which is thus reduced in
strength. However, as background objects appear, it is
possible to estimate the background motion separately
from the target, after which target motion contrary to
the estimated background motion is strongly amplified.
In the range from approximately 25 to 150 background
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Fig. 7. Effect of variation of the number of boundary objects on
tracking simulations. Simulations were conducted with Dhalf = 300.
a Tracking performance of the SF and LF systems. For each point
on the graph, a simulation was run for all nine possible initial target
positions (see Methods), and for each simulation the metric M (6)
was computed. Plotted is the median of the metric over all possible
initial target positions. The bold line at top (M123) indicates the fully
elaborated model. The bold line at bottom (M0) has all elaborations
turned off, and thus is equivalent to the original model. The gray
lines marked M23, M13, and M12 show the effect of the removal of
each elaboration individually. The dashed line (MLF) indicates the
LF system response. b Response of simulated FD cells in the elabo-
rated model. Plotted is the median RMS activation of simulated FD
cells (in arbitrary units) over all possible initial target positions. The
solid line indicates the left FD cell and the dashed line the right FD
cell. The median response of both cells is quite similar, indicative of
a range of initial target positions to the left and right of the fly. Both
cells become activated as the number of background objects increases
and then become inactive as estimation of the background motion
becomes more difficult

objects, the performance of the model holds roughly
constant. As shown in Fig. 7b, the RMS activation of
simulated FD cells [(15) and (16)] during the tracking
experiment also holds roughly constant over this range.
As the number of objects continues to increase beyond
about 170, the background viewed by the simulated fly
approaches a continuum with brightness graded by dis-
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tance, and the tracking actually becomes easier since edges
of individual objects no longer create strong motion sig-
nals. In fact, when the number of objects is increased be-
yond about 230, all models are able to track the target,
although the contrast of the target relative to the back-
ground is very small, and thus control signals are very
weak.

Figure 7a also shows the effects on the model of the re-
moval of each elaboration individually and of the removal
of all three. With k∗ positive (M23), the model is still able
to track the target, but with significantly less gain. With a
fixed assumption of rotation (M13), performance is good
until the number of background objects reaches about 80
and expansive motion of the background becomes strong,
after which performance declines. With the use of direc-
tional motion for guidance (M12), the model turns strongly
away from the target. With all three elaborations removed
(M0), the gain of the model is so small that it fails to turn
significantly toward the target. The LF system (MLF) is
able to track the target only for a very small number of
objects, after which it devolves into an optomotorlike re-
sponse, fixated by the background. In some cases for a
large number of background objects, this response actu-
ally leads to turns away from the target.

Using a relatively large number of background objects
(200), we varied the parameterDhalf , which affects not only
the brightness of the target but the contrast of the target
relative to the background as well. The results of these
experiments are shown in Fig. 8. Since the strength of the
EMD output is proportional to the square of contrast, the
angular velocities generated by the model for low values
of Dhalf are close to zero. As Dhalf increases, the perfor-
mance of the fully elaborated model (M123) improves and
saturates. At the highest value of Dhalf shown, the tracking
problem is very hard due to a low contrast of the target
relative to the background, and only the fully elaborated
model is able to successfully track in this case. Figure 8
also shows the effects on the model of the removal of each
elaboration individually and of the removal of all three.
With k∗ positive (M23), or with a permanent assumption of
rotation (M13), the gain of the model output is so reduced
that the fly is virtually unable to turn. As before, with the
use of directional motion for guidance (M12), the model
turns strongly away from the target. With all three elab-
orations removed (M0), the gain of the model is again so
small that it fails to turn significantly toward the target.
The LF system (MLF) is able to track the target only for
very low values of Dhalf in which the background contrast
is extremely small. When Dhalf is sufficient to generate sig-
nificant background motion, the LF system completely
fails to track the target.

Since the gain of the original model (M0) is so small rel-
ative to the elaborated model (M123), it is reasonable to ask
if the elaborations have simply increased the effective con-
trol loop gain of the model. To investigate this possibility,
we have increased the relative control loop gain of the
original model by factors of up to 100 and plotted perfor-
mance against Dhalf in Fig. 9. Only for very low values of
Dhalf does the original model ever match the performance
of the elaborated model, and in no case is the original
model able to handle the low contrast between target and
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Fig. 8. Effect of the variation of Dhalf , the distance at which bright-
ness reaches 50%, on tracking performance of the SF and LF systems.
Simulations were conducted using 200 boundary objects. For each
point on the graph, a simulation was run for all nine possible initial
target positions (see Methods), and for each simulation the metric M

(6) was computed. Plotted is the median of the metric over all possi-
ble initial target positions. Increasing Dhalf increases the brightness
of the target, but also increases the brightness of background objects.
The bold line at top (M123) indicates the fully elaborated model. The
bold line at bottom (M0) has all elaborations turned off, and thus is
equivalent to the original model. The gray lines marked M23, M13, and
M12 show the effect of the removal of each elaboration individually.
The dashed line (MLF) indicates the LF system response

background implied by large values of Dhalf . For the most
difficult case shown (Dhalf =1000), the performance of the
original model becomes increasingly worse as control loop
gain increases.

4 Discussion

We have presented an elaborated version of the small-field
system model of Reichardt et al. (1989) and described how
the elaborated model may be used to allow a simulated fly
to track a small moving target in a background cluttered
with stationary distractor objects. The first elaboration
addresses an alteration of the interaction of binocular
pool cells to strengthen rather than weaken the effects of
normalization. The second elaboration addresses proper
accounting for expanding optical flow fields as well as
the rotational fields included in the original model. The
third and final elaboration alters the model to direct a
turn toward the target regardless of the direction of its
motion. Our simulation results have shown that the elab-
orated model is capable of tracking a small moving target
even in situations in which the original model fails.

While these three elaborations were made to improve
tracking performance, the elaborated model can still serve
to predict the torque data of Reichardt et al. (1989).
The alteration of binocular pool cell interaction increases
the magnitude of model response but does not alter
the selectivity to small moving targets. The elaborated
model will automatically choose rotational flow fields for
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Fig. 9. Effects of increasing the relative gain of the original model.
For each point on the graph, a simulation was run for all nine possi-
ble initial target positions (see Methods), and for each simulation the
metric M (6) was computed. Plotted is the median of the metric over
all possible initial target positions. While Dhalf is swept over the same
values as in Fig. 8, the effects of relative gains of 1.0, 10.0, 25.0, and
50.0 on the original model are shown. The bold line (M123) indicates
the fully elaborated model. Gray lines (M0) indicate the original model
with a variety of relative gains. The beginning of numerical instability
is evident in the data for the two highest relative gains shown. With a
relative gain of 100 (data not shown), the original model was numer-
ically unstable for Dhalf larger than 500 and exhibited unpredictable
performance metrics

normalization in the presence of rotational visual stimuli,
thus employing the original model equations. The details
of response caused by use of turns toward, rather than
away from, the target will be smoothed out by the running
average operation necessary to compare with the torque
data collected.

The first elaboration suggests alteration of the sign of
the parameter k∗ such that binocular pool cells on the same
side of the brain interact in an inhibitory fashion before
shunting inhibition of the small-field motion outputs. In
the original model, k∗ was the only parameter an increase
in the value of which would detract from tracking perfor-
mance. A positive value of k∗ throws away information
by mixing contradictory signals, whereas a negative value
makes best use of the redundancy inherent in having two
binocular pool cells tuned for optical flow fields of oppo-
site signs. This use of redundancy is analogous to that
implied by the parameter T in the model that combines
motion detectors of opposite signs and to the parameter
k in the model that combines monocular pool cells.

The second elaboration involving proper accounting
for expansive flow fields becomes especially important at
the higher values of Dhalf shown in Fig. 8. In these cases,
the background motion pattern is very strongly expan-
sive. The original model, expecting rotational flow fields,
experiences equal parts of CW and CCW rotation and
thus normalizes all motion signals by the same quan-
tity. It is thus unable to track the target separately from
the background. This elaboration allows magnification

of motion signals that are inconsistent with an expansive
pattern of background optical flow. Neuronally, this elab-
oration requires two more binocular pool cells on each
side of the brain sensitive to expanding and contracting
optical flow fields, which might be identified with a num-
ber of tangential cells in the lobula plate of the fly (Borst
1991). Although visual experience with contracting opti-
cal flow fields may be rare for a fly, the presence of such a
unit with the use of negative k∗ increases the strength of
normalization in the presence of expansive visual stimuli.
The pool cell unit for contraction is included for symme-
try, but its presence is not necessary to the functioning of
the model. The alteration of the shunting operation from
expansive to rotational based on the relative activation of
pool cells might be accomplished by shunting inhibition
of the rotational normalizing pathway from the expansion
and contraction pool cells, and vice versa. Such a shunting
inhibitory connection could act as a “veto” to prevent nor-
malization by the class of motion not being experienced.

Due to the formulation of the original model, a target
moving toward the midline of the insect caused a turn away
from the target. In the case of a target making unpredict-
able course changes, this turn could lead to loss of sight of
the target. The third elaboration alters the expression for
computing the torque output so that a target on the left
always leads to a turn to the left, resulting in a nondirec-
tional small-field motion unit. This use of nondirection-
al motion in the guidance of the system has implications
for the model of identified neurons, since the expressions
altered were those identified with FD cells. Since nondi-
rectional FD cells have not been suggested by the electro-
physiology, it is necessary to reformulate the expressions
of (23) and (24) in terms of directional cells. This can be
done by synthesizing directional FD model cells as in the
original model

XFD1(t)=
N

∑

i=1

[y+
i (t)]n − [y−

i (t)]n (26)

and postulating the existence of a directional FD cell that
responds strongly to small targets moving in a single direc-
tion:

XFD2(t)=2 ·
N

∑

i=1

[y+
i (t)]n . (27)

The output can then be calculated in terms of the differ-
ence of these two cells:

X(t)=XFD2(t)−XFD1(t) , (28)

which, due to the mutual exclusion of y+
i and y−

i , can be
shown to be mathematically identical to the calculation of
(23) and (24). Thus the interaction of four different FD
cells, rather than two as in the original model, is required
to synthesize the output of the elaborated model.

Keeping the target centered in the visual field is the best
approach to tracking when the target trajectory is unpre-
dictable, which the authors consider to be the most likely
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case when insects track other insects. To improve tracking
performance in this case, our third elaboration alters the
model such that it actuates a turn toward the target regard-
less of the direction of target motion. However, in the case
of a target moving toward the midline of the insect that
holds a steady course and thus follows a predictable lin-
ear path, the turn actuated by the model without the third
elaboration (away from the target) actually leads to a bet-
ter interception than with the fully elaborated model. This
is due to the fact that information about the future position
of the target is effectively used to reduce the interception
time. It can be shown that, rather than turning to face the
target immediately, the shortest time to interception in the
case of a linearly moving target is obtained by holding the
angular velocity of the target at zero, thus keeping it at a
constant angular position in the visual field. The path of
the simulated fly will intersect the target path ahead of the
current position of the target. This is exactly the behavior
generated by the model without the third elaboration. This
interception strategy is well known in missile guidance lit-
erature as proportional navigation (Zarchan 2002), usually
occurring between a fast-moving missile and a relatively
slow-moving aircraft, whose flight path over small time
scales may be approximated as linear. In the case of a line-
arly moving target, or a target moving much more slowly
than the fly, the elaborated model may be used without
the third elaboration.

Kimmerle and Egelhaaf (2000) replayed optical flow
patterns generated by tethered flying flies to flies in a flight
simulator and recorded from FD cells. The electrophysio-
logical response of an FD cell was only weakly dependent
on background motion, despite evidence that wide-field
motion inhibits FD cell activation. In the present model
as well as in the original, background motion inhibits the
activation of FD cells. However, Fig. 7a shows that over
a wide range of background complexities, from approxi-
mately 25 to 150 boundary objects, the performance of the
elaborated model is maintained. Over this range, Fig. 7b
shows that the RMS activation of FD cells in the elab-
orated model (26) is roughly maintained despite an in-
crease in background motion. This is possible because of
the first elaboration (negative k∗), which suggests inhibi-
tion of binocular pool cells by other binocular pool cells,
which then provide shunting inhibitory inputs to small-
field units. This inhibition of inhibitory units was in fact
suggested by Kimmerle and Egelhaaf (2000) as a possible
explanation for the insensitivity of FD cells to background
stimuli. Mathematically, this elaboration allows the nor-
malizing term involving a weighted sum of binocular pool
cells to approach zero. In this case, (21) and (22) simplify
to

y+
i,right(t) =

v+
i,right(t)

β
, (29)

y−
i,right(t) =

v−
i,right(t)

β
, (30)

and the normalization is independent of the visual stimu-
lus. Thus the first elaboration allows responses of motion
inconsistent with the background to be emphasized with-
out regard to the strength of background motion.

While the present work addresses the neural basis of
small-target tracking in the lobula plate of the fly, other
authors have detailed a separate circuit for visually based
tracking in the lobula of the fly. Gronenberg and Strausfeld
(1991) have identified a set of male-specific neurons impli-
cated in a neuronal realization of the 1974 Land and Col-
lett model that is proposed to underlie target tracking in
the fly. This circuit suggests that a target is brought into
the acute region of the male compound eye using non-
directional motion detectors and held there using direc-
tional motion detectors. Presumably this tracking system
shares the same underlying motion detection substrate as
the present model, but the situations in which each system
is uniquely valuable are presently unknown.
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